The THIRD type of autoimmune thyroid disease: Atrophic Thyroiditis (2022)

Renew the paradigm. Optimize our therapy.

By thyroidpatientsca on December 27, 2018

The THIRD type of autoimmune thyroid disease: Atrophic Thyroiditis (1)

Do you know about the THIRD type of autoimmune thyroid disease?

Atrophic thyroiditis may coexist with Hashimoto’s and can occur in people with Graves’ disease.

Atrophic Thyroiditis is an extreme form of primary hypothyroidism in which the thyroid gland is severely atrophied (shrunken, shrivelled) by antibody attack.

In some estimates, approximately 10% of Hashimoto’s patients carry the blocking antibodies associated with Atrophic Thyroiditis (AT) (Fröhlich & Wahl, 2017). See the statistics of how many people are affected by this form of thyroid autoimmunity in “Overlooked: How many Hashimoto’s patients with TSH-Receptor antibodies?

But Atrophic Thyroiditis is not simply a subtype of Hashimoto’s.

Atrophic Thyroiditis is caused by a different set of antibodies than Hashimoto’s and Graves, but it is genetically and immunologically related to Graves disease, as seen in this diagram by Fountoulakis and Tsatsoulis, 2004, which I’ve color-coded and illustrated.

The THIRD type of autoimmune thyroid disease: Atrophic Thyroiditis (2)

Paradoxically, it’s more related to Graves’ disease, even though Graves’ disease causes the opposite clinical presentation, hyperthyroidism.

As I explain in this article, many myths and general ignorance exists regarding this form of thyroid disease because thyroid autoimmunity is not as simple as it seems.

Summary: Hashimoto’s versus Atrophic thyroiditis

The first place to start learning is to distinguish Hashimoto’s from Atrophic Thyroiditis, so here is the contrast in a nutshell.

Hashimoto’s is caused by a combination of thyroid peroxidase antibodies (TPOab), inflammation, and other immune system variables (Fröhlich & Wahl, 2017).

Atrophic Thyroiditis (AT), however, has a different cause and prognosis than Hashimoto’s:

  • Atrophy involves TSH-receptor blocking antibodies (TBAb). Confusion has arisen regarding TBAb as the essential contributing factor because the antibody can completely disappear after thyroid atrophy, and some people with the antibody do not suffer atrophy but enjoy a complete remission. Clearly, TBAb is not the sole cause, but it is so frequently found in people with thyroid atrophy that it is far more than a coincidence (Fröhlich & Wahl, 2017).
  • AT is not “end-stage [Hashimoto’s] thyroiditis,” but that’s a common medical myth. While the vast majority of Hashimoto’s patients retain normal thyroid volume into old age, severe thyroid volume loss from AT can occur at any age, even in early childhood (Jara et al, 2008).
  • The time-scale of AT may be swift or intermittent. In contrast with Hashimoto’s, which can, in some cases, take decades to gradually damage the gland enough to cause hypothyroidism, AT often leads to far swifter process of thyroid gland volume loss and destruction if certain antibodies coexist in a susceptible person. Remissions may occur between successive flares of the antibody.
  • AT can interfere with hormone therapy. Hashimoto’s antibodies do not appear to interfere with hypothyroid therapy, other than by causing gradual destruction of the thyroid. But during treatment with thyroid hormone, TBAb can cause wild fluctuations of TSH, FT4 and FT3 if even a small remnant of a thyroid remains. The antibody blocks TSH hormone from stimulating the thyroid to varying degrees. They will also block TSH receptors located elsewhere in the human body, but extrathyroidal effects of TBAb on bone, heart, kidney, skin, and eyes have not yet been traced back to the antibody.
  • AT can affect both maternal and fetal health during pregnancy, and the TSH receptor antibodies cross the placenta. But if the fetus’s TSH receptors are blocked, they can still survive on maternal thyroid hormones. If the child does not create their own antibodies, they may have transient congenital hypothyroidism during the neonatal phase, and they can recover. (See “TBAb hypothyroidism diagnosed in a mother and baby.”)

Many of these points are elaborated below.

Myths and ignorance of atrophic thyroiditis

Despite its severity and influence on health, atrophic thyroiditis not easy to diagnose.

This is because of widespread medical amnesia and myths, the absence of goiter, the frequency of antibody fluctuations, and problems with testing technologies and test ordering practices.

The current level of ignorance and the widespread myths about this thyroid disease entity is astounding.

Atrophic thyroiditis used to be better known more than 20 years ago when hypothyroidism was classified into either of two presentations based on there being thyroid swelling (goiter) or not, prior to thyroid hormone treatment:

  • atrophic (or non-goitrous)
  • vs. goitrous (Hashimoto’s) (See Bogner et al, 1992).

Most of the science on thyroid atrophy is buried in archives. I’ve discovered more than 100 articles on thyroid gland atrophy going back to the 1800s, and every decade there appear new publications on it. But scientists tend to review only the most recent 10 years of research. (See the bibliography I shared back in early 2019 when I first published this article).

This common practice of looking only at recent publications causes medical and scientific amnesia.

Today, most doctors and patients have never heard about Atrophic Thyroiditis (AT). That’s because it’s not usually taught in medical school anymore, and most thyroid blogs, books, and websites don’t mention it.

One reason why AT has been overlooked is that it simplifies diagnosis to pretend that it does not exist.

Real thyroid autoimmunity is not simple, but a complex overlapping web of antibodies and clinical presentations. The blocking and cleavage antibodies can occur in people who also have Hashimoto’s or Graves’ disease. The full spectrum of thyroid autoimmunity involves overlapping antibodies in some patients.

The drive to oversimplify thyroid diagnosis has been going on for decades. Some thyroid scientists and textbook writers appear to find the scientific fact of complex thyroid “multi-autoimmunity” too confusing for their students or readers. The large number of people with autoimmune hypothyroidism makes it too tempting to simplify the autoimmune hypothyroid category and treat it as if it’s homogeneous.

As a result of these myths and lack of knowledge, many people with Atrophic Thyroiditis (such as myself) have been misclassified as Hashimoto’s thyroiditis.

This mistake is based on the false assumption that ALL autoimmune hypothyroidism is Hashimoto’s.

Most forms of autoimmune thyroid disease are associated with the thyroid peroxidase (TPO) antibody known to be involved in Hashimoto’s.

(Video) Hashimoto's/Atrophic (Autoimmune) Thyroiditis

Even some Graves’ disease patients are positive for TPOab. Therefore, many diagnostic algorithms stop after measuring TPOAb, and some stop after measuring both TPOAb and thyroglobulin (TG) antibodies.

However, neither thyroid gland atrophy nor TSH-blocking antibody activity require the presence of the TPO antibody or TG antibody.

The TPO antibody is in fact incapable of causing thyroid gland atrophy (Fröhlich & Wahl, 2017). Instead, TPO antibody is implicated in lymphocytic infiltration of thyroid cells without thyroid volume loss. Only in cases where a person has both Hashimoto’s AND TSH receptor blocking / cleavage antibodies will you find thyroid atrophy occur in a Hashimoto’s patient.

  • How can it be the “end stage” of Hashimoto’s if it occurs even in a five-year-old child? (Inamo et al, 2011)

Therefore, it is false to claim that an atrophied thyroid is “end-stage” Hashimoto’s !

This myth of “end-stage Hashimoto’s” is still perpetuated by research publications. Authors who claim this sometimes perform incomplete literature reviews that omit crucial Japanese sources (although they were published in English). Others don’t fact check their sources’ claims. Some are simply ignorant. They don’t understand the various subtypes and mechanisms of the TSH receptor antibody.

Some patients are even left as unclassified cases of hypothyroidism of unknown, antibody-negative or “idiopathic” cause just because the Hashimoto’s TPO antibodies are absent or (as in my case) present but not elevated.

A final barrier is antibody testing. If you want to test for the TSH receptor blocking antibodies, good luck!

Some Graves’ hyperthyroidism tests available at laboratories, such as the TSI test, do not focus on the blocking antibody but rather the stimulating antibody alone, and they are usually only ordered if a person is hyperthyroid.

Some TRAb antibody tests can measure both blocking and stimulating antibodies, but you have to test at the right time. You have to catch the antibody in the midst of a flare. Both Graves’ stimulating antibodies and AT blocking antibodies are known to completely disappear (go into remission) and to occasionally return (relapse).

Therefore, testing for the blocking antibody is not a reliable way to diagnose Atrophic Thyroiditis due to the high likelihood of a false negative during remission. (See the section below for practical tips on AT signs and diagnosis).

What causes Atrophic Thyroiditis?

Atrophic thyroiditis is defined in various ways, but in this article, I consider atrophic thyroiditis as permanent, autoimmune-caused severe thyroid gland atrophy necessitating lifelong thyroid hormone replacement.

Another phenomenon caused by the same TBAb antibody is transient autoimmune “blocking hypothyroidism,” that need not always cause a lifelong disabling state of thyroid gland atrophy. See Tagami et al, 2019.

Atrophic Thyroiditis is a HYPOthyroid form of Graves’ disease.Jara, et al, 2008, explains that Atrophic Thyroiditis patients usually have a Graves’ disease genetic profile, which is quite distinct genetically from Hashimoto’s.

  • The normal form of Graves’ HYPERthyroidism is caused by TSH-Receptor*stimulating*antibodies that overstimulate the thyroid gland to produce hormone, even in the absence of TSH.
  • But Atrophic Thyroiditis is associated with the presence of TSH-Receptor*blocking*antibodies that cause HYPOthyroidism.

The blocking antibody prevents TSH from stimulating TSH receptors in the thyroid gland and other tissues where the receptor is expressed. Therefore, even in patients with extremely high TSH levels over 100 can have no TSH stimulation of their thyroid gland when the antibody is strong enough to block the receptors.

  • As demonstration that the blocking antibody is a Graves’ disease-associated antibody, according to Fröhlich & Wahl, 2017, “Thyroid Autoimmunity,” blocking anti-TSH-Receptor antibodies occur in 25–75% of Graves’ Disease patients.

It is now known that *cleavage* (formerly called “neutral”) TSH-receptor antibodies that can cause thyroid cell apoptosis in the absence of the stimulating antibody, and that the presence of the stimulating antibody protects the gland from apoptosis (Morshed et al, 2013, 2015).

  • Like the blocking antibody, the cleavage antibody is also a Graves’ disease-associated antibody. Morshed et al, 2010, mentioned that 59% of Graves patients in a study had the neutral/cleavage TSH-receptor antibodies in circulation.

The suppression of TSH hormone in circulation cannot cause thyroid gland atrophy. This is because the healthy TSH receptor has the ability to signal when empty, and it signals independently of TSH hormone in blood. This is known as “constitutive,” “basal,” or “ligand-independent” TSH receptor activity (Furmaniak et al, 2015). As demonstration of this principle,

  • In patients with pituitary dysfunction (central hypothyroidsm), many of whom cannot secrete any TSH during adequate thyroid treatment, thyroid gland volume and function is usually maintained despite TSH deficiency (Persani et al, 2019).

The TBAb antibody is the only known natural substance known to scientists that can stop the “constitutive” signal of the TSH receptor. The TBAbs harvested from a female with autoimmune thyroid disease, labeled “5C9” (Sanders et al, 2010), have become the basis of the development of a synthetic drug that one day could treat thyroid diseases worsened by TSHR signaling, like some thyroid cancers.

But the TBAb antibody on the thyroid does not always lead to atrophy:

  • Patients who experience severe TSH-blocking hypothyroidism caused by the blocking antibody can experience severe, yet transient, hypothyroidism. But they can experience full remission because the blocking antibody alone does not always result in disabling thyroid atrophy.
  • After the blocking antibody disappears from blood, a person can revert to a state that requires no thyroid therapy if enough thyroid tissue remains to support normal TSH-driven thyroid function. (Takasu et al, 2000)

Therefore, current science points to the TBAb in addition to other factors as the likely cause of thyroid gland atrophy (severe shrinkage), just as Hashimoto’s is caused by TPOab in addition to other factors.

AT patients with incomplete atrophy can flip between hypo and hyper status

You may often hear the mantra that “thyroid antibodies don’t affect treatment,” but that’s false with regard to Graves’ disease antibodies, and it’s also false with regard to Atrophic Thyroiditis antibodies.

The antibodies that are part of this thyroid disease can significantly interfere with lifelong thyroid therapy, if or when the antibody persists, or if the antibody attack returns long after thyroid atrophy has decimated the thyroid gland.

According to Takasu et al, 2012, a small percentage of hypothyroid patients with the blocking antibody, as well as Graves’ disease patients, can flip between hypothyroid, hyperthyroid and euthyroid status over many years, depending on whether the blocking antibody predominates over the stimulating antibody, or whether the two antibodies are in balance with each other, and whether there is enough thyroid tissue to overstimulate.

TSHR antibody levels can fluctuate wildly and can also completely disappear or resurface over time.

A real example — My thyroid and failed therapy

A normal female gland is about 12-15 mL volume. My gland is 0.5 mL, a size that is found in less than 2% of autoimmune thyroid patients, according to Carle et al, 2009.

I was without hypothyroid symptoms until my late 20s. In my early 30s I presented with a TSH over 150 without any goiter, which should have been a clear diagnostic sign to my doctor.

Because of my lack of goiter, my severe hypothyroidism went undiagnosed until I was in a severe state of mental and physical distress that interfered with daily life and work. I misattributed my health problems to my other autoimmune disease (ankylosing spondylitis). Finally, after looking up my many symptoms online, I was the one who asked for a TSH test.

Because the TSH was so clearly elevated, I was put on therapy with no further antibody tests, and no ultrasound was ordered to explain the lack of goiter which is usually present with an elevated TSH.

(Video) Understanding Autoimmune Thyroid Disease

In my final 3 years of therapy on Synthroid, I had a TSH receptor blocking antibody attack. Previously, records show I had a TSH that ranged from low-normal to almost suppressed by a FT4 at top of reference range and a FT3 level in the lower half of reference.

When the antibody attack arrived (or returned after many years), after a small dose reduction, my TSH suddenly rose to 18.8 mU/L while my FT4 was still in the upper part of reference. I continued to have a high and variable TSH level despite a high-normal FT4. Meanwhile, the Total and Free T3 level remained almost flatlined below reference range over three years and many thyroid tests.

T4 monotherapy finally became unsustainable after I fell into a severe health crisis for three months including random daily and nightly chest pain and tachycardia that triggered a numb or weak arm, legs, or severe lightheadedness. Walking, standing, and normal cognitive tasks became difficult. T3 levels fell even lower. Reverse T3 elevated far above reference, demonstrating the presence of a severe yet undiagnosed illness. Reducing T4 dose offered temporary relief from chest pain but worsened the hypothyroidism. Several attempts to return the T4 dose back to normal levels ended in severe pain and hospital emergency visits.

An ultrasound was finally ordered and revealed the atrophied thyroid gland. A TRAb antibody test completed in Alberta was negative, but a positive result was unnecessary in light of the clear ultrasound, the history of elevated TSH on diagnosis without goiter, and the recent laboratory history.

Transition to therapy with T3 hormone finally resolved the health crisis.

How the antibody warps TSH-FT4-FT3 relationships

What I experienced is a fluctuating pattern seen in others with active blocking antibodies during thyroid therapy (Tagami et al, 2019).

The loss of normal T4 feedback on TSH happens partly because the antibody blocks the ultrashort feedback loop at the pituitary gland. The “ultrashort feedback loop” has also been called the “Brokken-Prummel-Wiersinga” feedback loop after the team that published a few articles about it in the early 2000s. This pituitary TSH feedback loop has been more extensively studied in hyperthyroid Graves’ disease, but the inverse happens at the same receptor in patients with blocking antibodies.

As with cases of fluctuating Graves’ disease during treatment, as the antibody varies, TSH can be variable, unrelated to FT4 and FT3 levels, fluctuating mainly with the antibody level (Alzahrani et al, 2005). TSH becomes a distraction, not a useful measure of treatment effectiveness.

The TSH receptor blocking antibody may even function as an “inverse agonist” of TSH receptor signaling (McLachlan & Rapoport, 2013). The baseline TSH-receptor signaling could be cut off during a severe blocking antibody attack, and high levels of circulating TSH in blood would not signal at the blocked receptors in the thyroid and elsewhere across the entire body.

TSH signaling, by means elevating cAMP signaling in cells, usually upregulates Deiodinase type 2, an important deiodinase that performs T4-T3 conversion in the thyroid gland and throughout the body (Canettieri et al, 2000). Without even the basal signal produced by an empty TSH receptor, the T4-T3 conversion rate drops throughout the body, even in the pituitary and hypothalamus.

The downregulation of D2 in the pituitary could be the second reason why the TSH can become abnormally elevated in relationship to FT4 during therapy — the pituitary and hypothalamus could not convert enough T4 to T3 locally, and my circulating T3 levels were very low.

AT and Blocking hypothyroidism in pregnancy

In Graves’ disease and in Atrophic Thyroiditis, maternal TSAb (stimulating) and TBAb (blocking) antibodies can be transferred to the fetus during pregnancy.

As explained by the 2017 ATA guidelines for thyroid disease in pregnancy (Alexander et al, 2017),

“In mothers with autoimmune thyroid disease, autoantibodies to TPO, Tg, and the TSH receptor can be transmitted to the fetus. …

Whereas TPO antibodies and Tg antibodies do not significantly affect fetal or neonatal thyroid function, antibodies to the TSH receptor can stimulate or block thyroid hormonogenesis.”

Bucci et al in 2017 reviewed several studies showing how fetal and maternal health can be affected by the TSH receptor blocking antibody. In one US study of 788 neonates with congenital hypothyroidism,

“the neonatal screening program in US demonstrated potent TSHR-blocking activity in 11 cases.

The 11 babies were born to 9 mothers, all of whom were receiving thyroid replacement because of autoimmune hypothyroidism, and 3 had been treated initially for Graves’ disease.

TPO antibodies, although detectable in all mothers, did not predict the neonatal thyroid dysfunction, while the presence of TBAbs was confirmed in the serum of eight mothers: all newborns had transient congenital hypothyroidism.”

Bucci also summarized another study:

“In a large series of newborns screened for congenital hypothyroidism in Wales (375 cases identified over 966,969 infants screened), 6 (1.6%) were found to have transient congenital hypothyroidism due to maternal TBAbs.

All the mothers were hypothyroid on levothyroxine replacement therapy or were diagnosed with hypothyroidism after the reported elevation of TSH in their infants.”

Unfortunately, in both cases, the low incidence rates are biased by the fact that the case-finding was done as part of screening for congenital hypothyroidism or high TSH in the child after its birth. Even Bucci’s article examines the TBAb antibody within the context of screening for Graves disease during pregnancy.

But the danger to the fetus is extreme. It is possible that the transfer of blocking antibodies to the fetus can occur before a mother’s diagnosis and treatment. Atrophic Thyroiditis and Blocking hypothyroidism are often not diagnosed early enough because of a lack of goiter as TSH elevates. The symptoms of hypothyroidism may be misattributed to the pregnancy itself. Very severe intellectual disability can occur in a fetus who is hypothyroid during gestation because of TBAb antibodies, since their hypothyroidism may be deep and prolonged even past the first trimester. The ATA guidelines give this caution:

“Affected infants may have significantly impaired cognitive outcomes despite early and adequate postnatal treatment if maternal hypothyroidism was present and untreated during gestation.”

(Alexander et al, 2017)

The low incidence rates of TBAb, partly a result of medical ignorance, make it unlikely that screening hypothyroid pregnant women for TBAb antibodies will occur anytime soon.

Therefore, the doctor or patient need to be aware of this diagnosis and its risks during pregnancy.

(Video) Hypothyroidism and Hashimoto's Thyroiditis: Visual Explanation for Students

Common signs and diagnosis

Jara et al, offered a diagnostic pathway in 2008, in a chapter titled “Atrophic Thyroiditis”:

“we propose the following bases for AT diagnosis:

1. Clinic[al] or subclinic[al] hypothyroidism: Clinical picture of overt hypothyroidism or increase of TSH and TRH values without symptoms.

2. Positive thyroid autoantibodies: Positive thyroid stimulation blocking antibodies (TRBAb).

3. Thyroid ultrasonographic characteristic: Abnormal thyroid echographic pattern characterized by diffuse low thyroid echogenicity associated with a reduced
thyroid volume.

Criterion 1, Clinical picture. The high TSH and absence of goiter is significant in diagnosis. In my review of the literature, I see that a very high TSH (over 80 mU/L, often over 100 mU/L) at diagnosis, prior to treatment, with no goiter (no thyroid swelling) is a common finding in studies of Atrophic Thyroiditis.

However, the “clinical picture” is varied and involves more than high TSH and overt hypothyroid symptoms. Did you notice that Jara said “or increase of TSH and TRH values without symptoms?”

Are you confused? So are doctors.

That’s because the progress of AT sometimes involves fluctuations and even a tug-of-war between TBAb and Graves’ stimulating antibodies (TSAb) that might result in temporary euthyroidism based on a fragment of remaining thyroid tissue that is hyperstimulated.

The scientific literature also gives case studies with examples of the thyroid hormone fluctuations and TSH/T4 inconsistencies that occur in people who experience remissions and relapses of the blocking and/or stimulating TSH receptor antibody. See Fan et al, 2014, and the examples on page 2 of my article “Remissions and fluctuations in autoimmune thyroid disease: TRAb.”

However, Criterion #2, the antibody test, is difficult. as explained below, and TRH hormone from the hypothalamus is not tested anymore.

The best antibody test is (or was) the old TBII test — Thyrotropin-Binding Inhibitory Immunoglobulin (Khoo et al, 1999), even though the test did not reveal the blocking antibody alone. TBII tests measure both stimulating and blocking TSHR antibodies and add them together to yield a single number. The blocking activity of the antibodies can be interpreted in the context of thyroid hormone and TSH laboratory results.

Unfortunately, the old technology TBII test is being replaced by newer TRAb (thyroid receptor antibody) tests. Some of these “third generation” TRAb tests falsely claim to offer exactly what the TBII test used to provide (Ehlers et al, 2019). But if there are no scientific articles that prove that they detect the blocking antibody, how can we trust them?

It seems that most of these test developers have decided that the hypothyroid form of the TRAb antibody is not important to diagnose, from a test marketing perspective. Some of them simply measure the net difference between stimulating and blocking, giving a number only for the net stimulating effect (McLachlan & Rapoport, 2013).

Criterion #3, a thyroid ultrasound, is important, since gland atrophy remains even after the antibody has disappeared. “Reduced thyroid volume” is relative, so it needs to be assessed by sex (thyroids are smaller in women) and body surface area. Glands will show abnormal shrinkage in relationship to the person’s sex and body surface area, and sometimes an abnormal pattern of shrinkage in which the lobe that is usually larger in populations is smaller in the individual. (Vitti et al, 1994; Carle et al, 2009; Turicos et al, 2015).

Spread the knowledge

With so much at stake for the people who have Atrophic Thyroiditis, we ought to do our part in spreading the knowledge among patients and doctors.

“The prevalence and functional significance of TSHR blocking autoantibodies (TBAb) in autoimmune hypothyroidism has been less well investigated compared to TSHR stimulating Ab.

There is an increasing body of data, however, that demonstrate the clinical utility and relevance of TBAb, and thus the importance of TBAb bioassays, in the diagnosis and management of patients with AITD.”

For doctors and scientists interested in an introduction to the newest research, I highly recommend the article “Thyrotropin Receptor Blocking Antibodies” by Diana et al, 2018.

As further explanation, I recommend McLachlan & Rapoport’s article, alongside Takasu et al’s 2012 study of patients. Jara et al’s article is also very good (2008).

Read more

Read more recent articles that cover the TSH-receptor blocking antibody and Atrophic Thyroiditis:

  • The Spectrum of Thyroid Autoimmunity
  • Remissions and fluctuations in autoimmune thyroid disease: TRAb
  • Infographics for Antibody testing
  • Overlooked: How many Hashimoto’s patients with TSH-Receptor antibodies?

References

Click to reveal reference list

Alexander, E. K., Pearce, E. N., Brent, G. A., Brown, R. S., Chen, H., Dosiou, C., Grobman, W. A., Laurberg, P., Lazarus, J. H., Mandel, S. J., Peeters, R. P., & Sullivan, S. (2017). 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid: Official Journal of the American Thyroid Association, 27(3), 315–389. https://doi.org/10.1089/thy.2016.0457

Alzahrani, A. S., Aldasouqi, S., Abdel Salam, S., & Sultan, A. (2005). Autoimmune Thyroid Disease with Fluctuating Thyroid Function. PLoS Medicine, 2(5). https://doi.org/10.1371/journal.pmed.0020089

Bucci, I., Giuliani, C., & Napolitano, G. (2017). Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00137

(Video) Hashimoto thyroiditis (Chronic autoimmune thyroiditis)

Canettieri, G., Celi, F. S., Baccheschi, G., Salvatori, L., Andreoli, M., & Centanni, M. (2000). Isolation of human type 2 deiodinase gene promoter and characterization of a functional cyclic adenosine monophosphate response element. Endocrinology, 141(5), 1804–1813. https://doi.org/10.1210/endo.141.5.7471

Carlé, A., Pedersen, I. B., Knudsen, N., Perrild, H., Ovesen, L., Jørgensen, T., & Laurberg, P. (2009). Thyroid Volume in Hypothyroidism due to Autoimmune Disease Follows a Unimodal Distribution: Evidence against Primary Thyroid Atrophy and Autoimmune Thyroiditis Being Distinct Diseases. The Journal of Clinical Endocrinology & Metabolism, 94(3), 833–839. https://doi.org/10.1210/jc.2008-1370

Ehlers, M., Schott, M., & Allelein, S. (2019). Graves’ disease in clinical perspective. Frontiers in Bioscience (Landmark Edition), 24, 35–47. http://www.bioscience.org/2019/v24/af/4708/fulltext.htm

Fan, W., Tandon, P., & Krishnamurthy, M. (2014). Oscillating hypothyroidism and hyperthyroidism – a case-based review. Journal of Community Hospital Internal Medicine Perspectives, 4(5). https://doi.org/10.3402/jchimp.v4.25734

Fountoulakis, S., & Tsatsoulis, A. (2004). On the pathogenesis of autoimmune thyroid disease: A unifying hypothesis. Clinical Endocrinology, 60(4), 397–409. https://doi.org/10.1046/j.1365-2265.2004.01978.x

Fröhlich, E., & Wahl, R. (2017). Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00521

Furmaniak, J., Sanders, J., Núñez Miguel, R., & Rees Smith, B. (2015). Mechanisms of Action of TSHR Autoantibodies. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Metabolisme, 47(10), 735–752. https://doi.org/10.1055/s-0035-1559648

Inamo, Y. (2011). A 5-year-old boy with atrophic autoimmune thyroiditis caused by thyroid-stimulation blocking antibodies. Journal of Pediatric Endocrinology & Metabolism: JPEM, 24(7–8), 591–594. https://pubmed.ncbi.nlm.nih.gov/21932608/

Jara, L. J., Vera-Lastra, O., & Medina, G. (2008). Atrophic Thyroiditis. In Diagnostic Criteria in Autoimmune Diseases (pp. 221–225). Humana Press. https://doi.org/10.1007/978-1-60327-285-8_42

Khoo, D. H. C., Eng, P. H. K., Ho, S. C., & Fok, A. C. K. (1999). Differences in the levels of TSH‐binding inhibitor immunoglobulins in goitrous and agoitrous autoimmune thyroiditis after twelve months of l‐thyroxine therapy. Clinical Endocrinology, 51(1), 73–79. https://doi.org/10.1046/j.1365-2265.1999.00740.x

McLachlan, S. M., & Rapoport, B. (2013). Thyrotropin-Blocking Autoantibodies and Thyroid-Stimulating Autoantibodies: Potential Mechanisms Involved in the Pendulum Swinging from Hypothyroidism to Hyperthyroidism or Vice Versa. Thyroid, 23(1), 14–24. https://doi.org/10.1089/thy.2012.0374

Morshed, S. A., Ando, T., Latif, R., & Davies, T. F. (2010). Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades. Endocrinology, 151(11), 5537–5549. https://doi.org/10.1210/en.2010-0424

Morshed, S. A., Ma, R., Latif, R., & Davies, T. F. (2013). How one TSH receptor antibody induces thyrocyte proliferation while another induces apoptosis. Journal of Autoimmunity, 47. https://doi.org/10.1016/j.jaut.2013.07.009

Morshed, S. A., & Davies, T. F. (2015). Graves’ Disease Mechanisms: The Role of Stimulating, Blocking, and Cleavage Region TSH Receptor Antibodies. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 47(10), 727–734. https://doi.org/10.1055/s-0035-1559633

Persani, L., Cangiano, B., & Bonomi, M. (2019). The diagnosis and management of central hypothyroidism in 2018. Endocrine Connections. https://doi.org/10.1530/EC-18-0515

Sanders, J., Miguel, R. N., Furmaniak, J., & Smith, B. R. (2010). TSH receptor monoclonal antibodies with agonist, antagonist, and inverse agonist activities. Methods in Enzymology, 485, 393–420. https://doi.org/10.1016/B978-0-12-381296-4.00022-1

Tagami, T., Hiroshima-Hamanaka, K., Umakoshi, H., Tsuiki-Naruse, M., Kusakabe, T., Satoh-Asahara, N., Shimatsu, A., & Moriyama, K. (2019). Experimental Reproduction of Dynamic Fluctuation of TSH Receptor-Binding Antibodies Between Stimulation and Inhibition. Journal of the Endocrine Society, 3(12), 2361–2373. https://doi.org/10.1210/js.2019-00012

Takasu, N., Yamashiro, K., Komiya, I., Ochi, Y., Sato, Y., & Nagata, A. (2000). Remission of Graves’ hyperthyroidism predicted by smooth decreases of thyroid-stimulating antibody and thyrotropin-binding inhibitor immunoglobulin during antithyroid drug treatment. Thyroid: Official Journal of the American Thyroid Association, 10(10), 891–896. https://doi.org/10.1089/thy.2000.10.891

Takasu, N., & Matsushita, M. (2012). Changes of TSH-Stimulation Blocking Antibody (TSBAb) and Thyroid Stimulating Antibody (TSAb) Over 10 Years in 34 TSBAb-Positive Patients with Hypothyroidism and in 98 TSAb-Positive Graves’ Patients with Hyperthyroidism: Reevaluation of TSBAb and TSAb in TSH-Receptor-Antibody (TRAb)-Positive Patients. Journal of Thyroid Research, 2012, 182176. https://doi.org/10.1155/2012/182176

Turcios, S., Lence-Anta, J. J., Santana, J.-L., Pereda, C. M., Velasco, M., Chappe, M., Infante, I., Bustillo, M., García, A., Clero, E., Maillard, S., Rodriguez, R., Xhaard, C., Ren, Y., Rubino, C., Ortiz, R. M., & de Vathaire, F. (2015). Thyroid Volume and Its Relation to Anthropometric Measures in a Healthy Cuban Population. European Thyroid Journal, 4(1), 55–61. https://doi.org/10.1159/000371346

Vitti, P., Lampis, M., Piga, M., Loviselli, A., Brogioni, S., Rago, T., Pinchera, A., & Martino, E. (1994). Diagnostic usefulness of thyroid ultrasonography in atrophic thyroiditis. Journal of Clinical Ultrasound: JCU, 22(6), 375–379.

Coming soon: Jan. 28, 2019 petition reading in the House of Commons

Simpson’s paradox: Hoermann et al explain why T4-T3 therapy trials are faulty

Categories: Atrophic Thyroiditis, TSHR-Antibody

Trackbacks

    FAQs

    The THIRD type of autoimmune thyroid disease: Atrophic Thyroiditis? ›

    Atrophic Thyroiditis is an extreme form of primary hypothyroidism in which the thyroid gland is severely atrophied (shrunken, shrivelled) by antibody attack. In some estimates, approximately 10% of Hashimoto's patients carry the blocking antibodies associated with Atrophic Thyroiditis (AT) (Fröhlich & Wahl, 2017).

    What is atrophic autoimmune thyroiditis? ›

    Abstract. Atrophic thyroiditis is an organ-specific autoimmune disease characterized by thyroid autoantibodies, functional hypothyroidism, and absence of goiter. Atrophic thyroiditis is a rare entity, which occurs between the ages of 40–60 years especially in elderly women.

    What does it mean when your thyroid is atrophic? ›

    Thyroid atrophy is the end result of either severe thyroid damage or total loss of pituitary stimulation.

    How common is atrophic thyroiditis? ›

    Asymptomatic atrophic thyroiditis (AAT), one of the three variants of autoimmune thyroiditis, is characterized by the presence of serum antithyroid antibodies in good correlation with thyroid lymphoplasmocytic infiltrations. AAT affects 5-15% of the general population and is especially prevalent in elderly women.

    What autoimmune disease causes thyroiditis? ›

    Hashimoto's disease is also called Hashimoto's thyroiditis, chronic lymphocytic thyroiditis, or autoimmune thyroiditis.

    How is atrophic thyroiditis treated? ›

    The usual therapy is a prescription medicine called levothyroxine (Levo-T, Levothroid, Levoxyl, Synthroid, Tirosint, Unithroid). It's a man-made version of what a healthy thyroid makes.

    Is autoimmune thyroiditis life threatening? ›

    Doctor's Response. Hashimoto's thyroiditis can be fatal – untreated, it can cause coma or heart problems – but with treatment, the prognosis is good. The outlook for those with Hashimoto's thyroiditis is good.

    What will be the effect of thyroid atrophy? ›

    They are short-statured because the skeleton fails to grow. They are mentally retarded, show stunted growth and delayed puberty. They show dry skin, thick tongue, prolonged neonatal jaundice, lethargy and constipation. This can be treated by early administration of thyroid hormones.

    Can atrophic thyroid be reversed? ›

    Temporary hypothyroidism occurs when your thyroid is underactive, but the cause is very treatable. Temporary hypothyroidism sometimes occurs after pregnancy, external injury, or surgery. Permanent, or primary hypothyroidism is definitely treatable. Many doctors believe it can never be reversed.

    Is thyroiditis the same as Hashimoto's? ›

    Although anyone can develop Hashimoto's disease, it's most common among middle-aged women. The primary treatment is thyroid hormone replacement. Hashimoto's disease is also known as Hashimoto's thyroiditis, chronic lymphocytic thyroiditis and chronic autoimmune thyroiditis.

    Can autoimmune thyroiditis be cured? ›

    There is no cure for Hashimoto's, but replacing hormones with medication can regulate hormone levels and restore your normal metabolism. The pills are available in several different strengths. The exact dose your doctor prescribes will depend on a number of factors, including: Age.

    How is autoimmune thyroiditis diagnosed? ›

    Thyroid function tests are used to confirm thyroid disease; depending on results, antithyroid antibody tests may be useful to confirm an autoimmune cause of thyroiditis.

    How is thyroiditis diagnosed? ›

    Lab tests often can diagnose thyroiditis, including what type you have. Your doctor will start with a blood test. This measures the amount of thyroid hormone in your blood. It will show if your hormone levels are too high or too low.

    How do you stop your immune system from attacking your thyroid? ›

    In autoimmune thyroid conditions, your immune system is attacking your own thyroid tissue and causing it to malfunction. Some studies have shown that adding extra selenium and restoring a selenium deficiency can reduce anti-thyroid antibodies.

    How does thyroiditis make you feel? ›

    Acute or infectious thyroiditis

    Symptoms may include pain in the throat, feeling generally unwell, swelling of the thyroid gland and, sometimes, symptoms of an overactive thyroid gland or symptoms of an underactive thyroid gland. Symptoms usually get better when the infection is treated with antibiotics.

    What virus can cause thyroiditis? ›

    Mumps virus, influenza virus, and other respiratory viruses have been found to cause subacute thyroiditis. The most prominent feature of subacute thyroiditis is gradual or sudden onset of pain in the region of the thyroid gland.

    What is the most common cause of thyroiditis? ›

    The most common cause, or “attacker,” is an autoimmune disease, which is the result of your immune system accidentally attacking your body instead of protecting it. It's unclear why your immune system does this. Antibodies that attack your thyroid cause most types of thyroiditis.

    Does Hashimoto's cause thyroid atrophy? ›

    Background. Long standing Hashimoto Thyroiditis (HT) causes shrinking and atrophy of the thyroid, but may also lead to diffuse enlargement of the gland and/or formation of nodules.

    What does thyroid fatigue feel like? ›

    You may feel nervous, moody, weak, or tired. Your hands may shake, your heart may beat fast, or you may have problems breathing. You may be sweaty or have warm, red, itchy skin. You may have more bowel movements than usual.

    Can thyroid cause dizziness balance problems? ›

    Is dizziness a symptom of a thyroid problem? Yes, dizziness is a symptom of a thyroid problem. Thyroid diseases³ or thyroid abnormalities sometimes manifest as dizziness. A high heart rate, shortness of breath, and lightheadedness are all possible symptoms of hyperthyroidism.

    Can Hashimoto's lead to MS? ›

    Some studies have shown that autoimmune diseases "cluster together"[5]. Specifically, several studies have shown an increased co-occurrence of MS with Hashimoto's thyroiditis (HT) as compared to the general population [3,4,6] as well as an increased co-occurrence of MS with Graves' disease [7] while other have not [2].

    Can you lose weight with Hashimoto's thyroiditis? ›

    Losing weight with Hashimoto's disease is possible, but it may not be easy. Along with eating foods that reduce inflammation, it's important to consume more lean protein and vegetables to fight fatigue and help you stay energized.

    Can Covid affect your thyroid? ›

    Overall, the results of this study indicated that abnormal thyroid function is common in patients with COVID-19, particularly hyperthyroidism, and that TSH suppression appears to be associated with higher levels of the inflammatory cytokine IL-6.

    How does Hashimoto's feel? ›

    Hashimoto's thyroiditis can cause your thyroid to not make enough thyroid hormone. It is an autoimmune disease. It occurs when your body makes antibodies that attack the cells in your thyroid. Symptoms may include an enlarged thyroid gland (goiter), tiredness, weight gain, and muscle weakness.

    Can thyroid problems affect your breathing? ›

    Too little thyroid hormone weakens the muscles you use to breathe and makes your lungs work less efficiently. As a result, you may feel short of breath or have trouble exercising. Hypothyroidism also makes it more likely to develop sleep apnea, which are pauses in breathing that happen while you sleep.

    What will be the effect of thyroid atrophy? ›

    They are short-statured because the skeleton fails to grow. They are mentally retarded, show stunted growth and delayed puberty. They show dry skin, thick tongue, prolonged neonatal jaundice, lethargy and constipation. This can be treated by early administration of thyroid hormones.

    Can atrophic thyroid be reversed? ›

    Temporary hypothyroidism occurs when your thyroid is underactive, but the cause is very treatable. Temporary hypothyroidism sometimes occurs after pregnancy, external injury, or surgery. Permanent, or primary hypothyroidism is definitely treatable. Many doctors believe it can never be reversed.

    Videos

    1. Sonographic Evaluation of Diffuse Thyroid Disease
    (Radiology Video - radiology made esay)
    2. HASHIMOTO'S THYROIDITIS Living with Autoimmune Disease
    (Jen Lefforge)
    3. Thyroid Pathology Thyroiditis
    (MMK Hub)
    4. HASHIMOTO'S THYROIDITIS: Etiopathogenesis, Morphology & Complications
    (ilovepathology)
    5. Hashimoto’s Thyroiditis: Definition, Pathogenesis,Symptoms,Diagnosis,Treatment
    (medicine for you)
    6. Hashimotos Thyroiditis and Subacute Granulomatous Thyroiditis Pathology - ( Morphology )
    (Simplified Medicine)

    You might also like

    Latest Posts

    Article information

    Author: Moshe Kshlerin

    Last Updated: 09/05/2022

    Views: 6379

    Rating: 4.7 / 5 (57 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Moshe Kshlerin

    Birthday: 1994-01-25

    Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

    Phone: +2424755286529

    Job: District Education Designer

    Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

    Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.